Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 201
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-38625462

RESUMO

Inorganic chlorine is susceptible to water and soil salinization due to its non-degradability and high mobility. To clarify the environmental risks associated with the active inorganic chlorine in municipal solid waste (MSW), the specific characteristics and contributions of inorganic chlorine in different MSW categories were investigated in this study. MSW samples were collected from eight representative waste classification residential areas in Hangzhou, China. It was found that the inorganic chlorine content in different MSW categories varied significantly (0-113 mg/g). Perishable waste, paper, and plastic were found to be the main sources of inorganic chlorine in MSW. A four-category classification system was used to quantify the contribution of inorganic chlorine from each waste category. It was found that the misclassification of inorganic chlorine contributions from perishable waste and other waste accounted for 51.96% and 48.04%, respectively. However, when correctly classified into the four-category system, their contributions were reduced to 67.14% and 30.65%, respectively. Therefore, MSW classification showed a significant reduction in the overall contribution of inorganic chlorine. The misclassification reduces the contribution of inorganic chlorine to 48.04%, while correct classification increases the reduction to 69.35%.

2.
Environ Pollut ; 349: 123993, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38636838

RESUMO

Landfill is a huge pathogen reservoir and needs special attention. Herein, the distribution and spread risk of pathogen were assessed in excavated landfill scenario. The results show that landfill excavation will greatly increase the risk of environmental microbial contamination. The highest total concentration of culturable bacteria among landfill refuse, topsoil and plant leaves was found to be as high as 1010 CFU g-1. Total coliforms, Hemolytic bacteria, Staphylococcus aureus, Salmonella, Enterococci, and Fecal coliforms were detected in the landfill surrounding environment. Notably, pathogens were more likely to adhere to plant leaves, making it an important source of secondary pathogens. The culturable bacteria concentration in the air samples differed with the landfill zone with different operation status, and the highest culturable bacteria concentration was found in the excavated area of the landfill (3.3 × 104 CFU m-3), which was the main source of bioaerosol release. The distribution of bioaerosols in the downwind outside of the landfill showed a tendency of increasing and then decreasing, and the highest concentration of bioaerosols outside of the landfill (6.56 × 104 CFU m-3) was significantly higher than that in the excavated area of the landfill. The risk of respiratory inhalation was the main pathway leading to infection, whereas the HQin (population inhalation hazardous quotient) at 500 m downwind the excavation landfill was still higher than 1, indicating that the neighboring residents were exposed to airborne microbial pollutants. The results of the study provide evidence for bioaerosols control protective measures taken to reduce health risk from the excavated landfill.

3.
J Hazard Mater ; 468: 133810, 2024 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-38382340

RESUMO

Organic contaminants have a tendency to accumulate in low-permeability aquifers, making their removal challenging and creating a bottleneck in groundwater remediation efforts. The use of ozone micro-nano bubbles, due to their smaller size compared to traditional macrobubbles, shows potential for efficient penetration into the low-permeability aquifer and effective oxidization of contaminants. This study conducted batch experiments, column studies, and 2D tank experiments to systematically investigate the remediation efficiency of toluene in a heterogeneous aquifer using ozonated water (OW), ozone micro-bubble water (OMBW), and encapsulated ozone micro-nano bubble water (EOMBW) with rhamnolipid. Experimental results showed that rhamnolipid effectively increased the densities and reduced the sizes of micro-nano bubbles, leading to improved ozone preservation and enhanced toluene degradation. Nanobubbles exhibited higher mobility compared to microbubbles in porous media, while rhamnolipid increased the density of penetrated nanobubbles by 9.6 times. EOMBW demonstrated superior efficiency in oxidizing toluene in low-permeability aquifers, and a numerical model was developed to successfully simulate the ozone and toluene concentration. The model revealed that the increased oxidation rate by EOMBW was attributed to the preservation of ozone in micro-nano bubbles and the enhanced toluene oxidation rate. These findings contribute significantly to the application of EOMBW in heterogeneous aquifer remediation.

4.
J Environ Manage ; 351: 119730, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38086123

RESUMO

In this study, the behavior of heavy metal transformation during the co-thermal treatment of hazardous waste incineration fly ash (HWIFA) and Fe-containing hazardous waste (including hazardous waste incineration bottom slag (HWIBS) and electroplating sludge (ES)) was investigated. The findings demonstrated that such a treatment effectively reduced the static leaching toxicity of Cr and Pb. Moreover, when the treatment temperature exceeded 1000 °C, the co-thermal treated sample exhibited low concentrations of dynamically leached Cr, Pb, and Zn, indicating that these heavy metals were successful detoxified. Thermodynamic analyses and phase transformation results suggested that the formation of spinel and the gradual disappearance of chromium dioxide in the presence of Fe-containing hazardous wastes contributed to the solidification of chromium. Additionally, the efficient detoxification of Pb and Zn was attributed to their volatilization and entry into the liquid phase during the co-thermal treatment process. Therefore, this study sets an excellent example of the co-thermal treatment of hazardous wastes and the control of heavy metal pollution during the treatment process.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Eliminação de Resíduos/métodos , Esgotos/análise , Resíduos Perigosos/análise , Galvanoplastia , Chumbo , Incineração/métodos , Metais Pesados/análise , Resíduos Sólidos/análise , Carbono , Material Particulado/análise
5.
J Environ Manage ; 351: 119784, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38081091

RESUMO

During the long-term stabilization process of landfills, the pressure field undergoes constant changes. This study constructed dynamic pressure changes scenarios of high-pressure differentials (0.6 MPa) and low-pressure differentials (0.2 MPa) in the landfill pressure field at 25 °C and 50 °C, and investigated the sulfate reduction behavior in response to landfill dynamic pressure changes. The results showed that the pressurization or depressurization of high-pressure differentials caused more significant differences in sulfate reduction behavior than that of low-pressure differentials. The lowest hydrogen sulfide (H2S) release peak concentration under pressurization was only 29.67% of that under initial pressure condition; under depressurization, the highest peak concentration of H2S was up to 21,828 mg m-3, posing a serious risk of H2S pollution. Microbial community and correlation analysis showed that pressure had a negative impact on the sulfate-reducing bacteria (SRB) community, and the SRB community adjusted its structure to adapt to pressure changes. Specific SRBs were further enriched with pressure changes. Differential H2S release behavior under pressure changes in the 25 °C pressure environments were mediated by Desulfofarcimen (ASV343) and Desulfosporosinus (ASV1336), while Candidatus Desulforudis (ASV24) and Desulfohalotomaculum (ASV94) played a key role at 50 °C. This study is helpful in the formulation of control strategies for the source of odor pollution in landfills.


Assuntos
Desulfovibrio , Sulfeto de Hidrogênio , Sulfeto de Hidrogênio/química , Instalações de Eliminação de Resíduos , Sulfatos/química
6.
J Environ Manage ; 351: 119973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38160547

RESUMO

Wastes recycling and reutilization technique could simultaneously fulfill waste control and energy recovery sustainably, which has attracted increasing attention. This work proposed a novel waste reuse technology utilizing ceramsite and amended Fe2O3-ceramsite made from waste activated sludge (WAS) as additives to promote the yield of methane from WAS anaerobic digestion (AD). Experimental results demonstrated that compared to the control (85.05 ± 0.2 mL CH4/g-VS), the cumulative methane yield was effectively enhanced by 14% and 40% when ceramsite and Fe2O3-ceramsite were added. Further investigation revealed that ceramsite, especially the Fe2O3-ceramsite, enriched the populations of key anaerobes involved in hydrolysis, acidification, and methanogenesis. Meanwhile, potential syntrophic metabolisms between syntrophic bacteria and methanogens were confirmed in the Fe2O3-ceramsite AD system. Mechanisms studies exhibited that ceramsite and Fe2O3-ceramsite reinforced intermediate processes for methane production. The favorable pore structure, enhanced Fe (III) reduction capacity and conductivity also contributed a lot to the AD process.


Assuntos
Bactérias Anaeróbias , Misturas Complexas , Esgotos , Anaerobiose , Esgotos/química , Bactérias Anaeróbias/metabolismo , Metano , Reatores Biológicos , Eliminação de Resíduos Líquidos/métodos
7.
Waste Manag ; 175: 22-29, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38150952

RESUMO

Landfills are essential facilities for treating and disposing municipal solid waste. They emit sulfur-containing odors and serve as an important sink for a new type of pollutant called microplastics (MPs). This study focused on the initial stage of anaerobic degradation to establish the relationship between the release of MPs and odor generation. Our findings show the rapid release of MPs into the leachate in the early stage of landfill and their predominant accumulation in the leachate sediment. The circulating leachate contained 1.45 times higher concentrations of MPs than the noncirculating leachate, with a peak concentration of 39 items·L-1. In addition, fragmentation of MPs occurred. The percentage of MPs with particle sizes of 2.5-5 mm decreased from 66.70 % to 22.32 %, while those measuring 0.1-0.5 mm increased by 33.12 %. A positive correlation was observed between MP release and sulfate reduction. Although leachate circulation increased the release of MPs, it also reduced the overall release time and total amount of MPs exported from the landfill. Compared with the initial landfill waste, the leachate operation mode, regardless of circulation, resulted in a 6.15-8.93-fold increase in MP release. These findings provide a valuable foundation for the simultaneous regulation of traditional pollutant odor and new pollutants (MPs) in landfills.


Assuntos
Poluentes Ambientais , Eliminação de Resíduos , Poluentes Químicos da Água , Plásticos , Microplásticos , Poluentes Químicos da Água/análise , Resíduos Sólidos/análise , Instalações de Eliminação de Resíduos , Sulfatos
8.
Waste Manag ; 171: 491-501, 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37806157

RESUMO

The behavior of sulfate reduction, which was the source of hydrogen sulfide (H2S) odor, was investigated under changing pressure and temperature conditions inside landfills. The results showed that the release of H2S and methyl mercaptan (MM) was significantly inhibited at 25 °C and 50 °C under pressure, and the highest H2S and MM concentrations released were only 0.82 %-1.30 % and 1.87 %-4.32 % of atmospheric pressure, respectively. Analysis of the microbial community structure and identification of sulfate-reducing bacteria (SRB) revealed that temperature significantly altered the microbial community in the landfill environment, while pressure inhibited some bacteria and induced the growth and reproduction of specific bacteria. Key SRB (Desulfosporosinus-ASV212, Desulfitibacter-ASV1744) mediated differentiated sulfate reduction behavior in the pressure-bearing environment at 25 °C, while key SRB (Dethiobacter-ASV177, Desulfitibacter-ASV2355 and ASV316) were involved at 50 °C. This study provides a theoretical basis for the formulation of landfill gas management and control strategies.

9.
Chemosphere ; 344: 140429, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37832883

RESUMO

Due to the lack of normalized management, industrial waste is often co-disposed at open solid waste dumping sites, which could aggravate the groundwater pollution. In this study, 5 practical open solid waste dumping sites dealing with municipal solid wastes (MSW) (2 of 5) and industrial wastes mixed with MSW (3 of 5) were chosen to investigate the effect of waste co-disposal on the groundwater contamination. The industrial waste was mainly from rubber production, leather production, machinery industry, pharmaceutical industry and plastic production. 3 to 6 groundwater wells were excavated from each dumping site and 148 indices were analyzed, including regular chemicals, heavy metals, biological pollutants, volatile organic compounds (VOCs), semi-volatile organic compounds (SVOCs) and pesticide residues. Nemerow index analysis showed that 5 indices were severely polluted in the groundwater from every industrial waste co-disposal landfill, while only 0 and 1 severely polluted index was found for the two MSW landfill, respectively. The principal component analysis (PCA) analysis indicated that 2 biological pollutant (plate-counting bacteria (TPB) and total coliforms (TCs)), 4 chemical pollutants (permanganate index, ammonia, S2- and petroleum) were closely connected with the disposal of industrial waste. Besides, co-disposal of industrial waste also brought in series of PAHs and dichloromethane, with di(2-ethylhexyl)phthalate exceeding the standard limit (10.5 mg L-1). Attention should be paid to TPB and TCs, whose maximal concentrations exceeded the standard limit by extraordinary 3200 and 1600 times, respectively. The distribution pattern of the pollutants showed that the biological pollutants at the downstream area, and chemical pollutants at the leakage points exhibited the highest concentration, which indicated the downstream area and seepage points should be specially concerned for the industry waste co-disposed dumping sites.


Assuntos
Poluentes Ambientais , Água Subterrânea , Eliminação de Resíduos , Compostos Orgânicos Voláteis , Poluentes Químicos da Água , Resíduos Sólidos/análise , Resíduos Industriais/análise , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Água Subterrânea/química , Instalações de Eliminação de Resíduos , Poluentes Ambientais/análise
10.
Environ Technol ; : 1-9, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37711044

RESUMO

Chitin biomass is the second largest biomass resource on Earth but under-utilized. In this study, pretreated shrimp shells were converted into value-added platform chemical 5-hydroxymethylfurfural (HMF) using microwave hydrothermal treatment. Under the combined pretreatment of acid decalcification at room temperature and microwave-assisted alkali deacetylation, the HMF yield could reach 1.8 wt%. The key process parameters, including the holding temperature, holding time, and pH value, were evaluated and optimised. The highest HMF yield of 6.5 wt% was obtained at 202.6°C at a holding time of 5.8 min and a pH value of 1.5. This result demonstrates the potential of synchronously treating waste and recycling it, thereby offering a highly promising valorisation strategy for chitin-biomass utilisation.

11.
Hum Cell ; 36(6): 2113-2128, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37709991

RESUMO

Chromobox protein homolog 8 (CBX8) is a transcriptional suppressor participated in various cancers. However, the function and mechanism of CBX8 in the progression of ovarian cancer (OC) are unclear. In this study, we found that CBX8 was upregulated in OC tissues originating from GEPIA and TNM databases, OC patients' samples from hospital, and OC cell lines. Furthermore, CBX8 knockdown by short hairpin RNA (shRNA) technology markedly inhibited proliferation and invasion, induced migration, cell cycle arrest, and apoptosis in vitro. Mechanistically, CBX8 activated PI3K/AKT/mTOR signaling pathway to take effect. In addition, TRIM28 and E2F1 were enriched in OC tissues from the TNM database and OC patients' samples similar to the results of CBX8. Correlation analysis indicated positive correlations among TRIM28, E2F1, and CBX8. E2F1 was proved to bind to the promoter regions of CBX8 and TRIM28, while TRIM28 recruited E2F1 to increase the expression of CBX8 to further increase cell viability, proliferation, and invasion, and decrease migration, apoptosis, and cell cycle progression. Finally, CBX8 or TRIM28 knockdown repressed tumor growth and metastasis of OC in vivo. Therefore, our study showed that the promoting effect of CBX8 on tumor growth and metastasis of OC was participated in the PI3K/AKT/mTOR signaling, TRIM28 and E2F1. Our findings suggested that CBX8 could serve as a potential marker and therapeutic target for OC patients.

12.
Waste Manag ; 170: 297-307, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37738757

RESUMO

Landfills are reservoirs of antibiotic resistance genes (ARGs) and pathogens, and humans are exposed to these pollutants during extensive excavation of old landfills. However, the microbial contamination risk of landfilled waste with different ages has not been assessed. In this study, human bacterial pathogens (HBPs), ARGs, and virulence factors (VFs) were systematically determined using metagenomic analysis. Results showed that the abundance of HBPs, ARGs, and VFs increased with landfill age, the percentage of HBPs in refuse with deposit age of 10-12 years (Y10) was 23.75 ± 0.49%, which was higher than that in fresh refuse (Y0, 17.99 ± 0.14%) and refuse with deposit age of 5-6 years (Y5, 19.14 ± 0.15%), indicating that old refuse had higher microbial contamination risk than fresh refuse. Multidrug, macrolide, lincosamide, streptogramine, and tetracycline resistance genes were the primary ARGs, whereas lipooligosaccharides, type IV pili, and polar flagella were the dominant VFs in refuse. The HBPs showed a significant positive correlation with ARGs and VFs. Listeria monocytogenes, Salmonella enterica, Streptococcus pneumoniae, Acinetobacter baumannii, and Escherichia coli possibly possess both multiple ARGs and VFs and could be listed as high-risk HBPs in refuse. Mobile genetic elements, especially transposons, showed positive correlations with most ARGs and VFs, and they were identified as the primary factors accounting for the variations in ARGs and VFs. These findings will help understand the spread of ARGs and VFs in landfills and evaluate the potential risk of microbiological contamination in refuse of different landfill ages, thus providing guidance for preventing disease infection during landfill excavations.

13.
Chemosphere ; 338: 139515, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37474034

RESUMO

Energy conversion of waste activated sludge alkaline fermentation liquor (WASAFL) to medium-chain fatty acids (MCFAs) is promising for sludge treatment and carbon recovery. However, the single electron donor (ED) fermentation for MCFAs production has irreparable defects. To resolve the respective shortcomings of single electron donor (ED) and improve the MCFAs production efficiency from WASAFL, a novel biotechnical process utilizing ethanol and lactate as co-EDs within different combination ratios were investigated. The results verified that MCFAs production was highest with ethanol to lactate ratio of 1:3 (6988.54 ± 208.18 mg COD/L), being 1.46 and 1.87 times of that with ethanol and lactate as single ED. The kinetic analysis results confirmed that ethanol to lactate ratio of 1:3 resulted in the highest MCFAs yield and formation rate. The microbial taxa results uncovered that the relative abundance of Sphaerochaeta and Haloimpatiens showed positive correlation with MCFAs production. The metabolic pathway analysis indicated that the ethanol oxidization, lactate oxidization, acrylate pathway, reverse ß oxidization and fatty acid biosynthesis pathway might take place in the WASAFL fermentation system, contributing to the WASAFL-to-MCFAs conversion.


Assuntos
Elétrons , Esgotos , Cinética , Ácidos Graxos/metabolismo , Fermentação , Etanol , Ácido Láctico , Redes e Vias Metabólicas , Ácidos Graxos Voláteis
14.
Chemosphere ; 325: 138400, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36925009

RESUMO

The oxidation capacity of ozone micro-nano bubble water (OMBW) was always higher than ozonated water due to enhanced contact by bubble interface, while the effect of coexisted dissolved organic matter (DOM) on the oxidation efficiency was still unclear. In this paper, batch experiments were carried out to investigate the selective oxidation of toluene by both OMBW and ozonated water (OW) with coexisted DOM in water. Five types of background solutions were applied in this study, including humic acid solution, fulvic acid solution and three types of diluted landfill leachates at the same content of total organic carbon. Results showed that coexisted DOM had a greater inhibition effect on toluene oxidation rate by OMBW, and the oxidation rate of toluene by OMBW and OW became close. It was mainly caused by the decreased reaction rate between toluene and hydroxyl radical (kT-OH·) in OMBW after the introduction of DOM, which competed for the adsorption sites on micro-nano bubble interface. The fraction of ozone to oxidize toluene as well as kT-OH· was in positive correlations with SUVA254 and the content of humic acid-like substances, but negatively correlated with E2/E3, content of tryptophan-like proteins and content of fulvic acid-like substances. In addition, increasing the ozone dose was not effective in increasing the utilization rate of ozone in OMBW due to limited adsorption sites on micro-nano bubble interface. The paper was conductive to the application of ozone micro-nano bubble water in groundwater remediation with complex water matrices.


Assuntos
Ozônio , Poluentes Químicos da Água , Matéria Orgânica Dissolvida , Água , Substâncias Húmicas/análise , Tolueno , Poluentes Químicos da Água/análise
15.
J Environ Manage ; 338: 117776, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36965423

RESUMO

Based on the CaO-SiO2-Al2O3 system, the feasibility of co-vitrification of hazardous waste incineration fly ash (FA) and hazardous waste sludge (HWS) was verified. In the CaO-SiO2-Al2O3 ternary system diagram, the melting point of the system gradually decreases with an appropriate increase in SiO2 content when the CaO/Al2O3 ratio is determined to be approximately 1. The TG-DSC results revealed that the liquid phase generation temperature in the FA and HWS mixture system was significantly lower than those of FA and HWS individually owing to the different CaO, SiO2, and Al2O3 contents; this is consistent with the results of the theoretical melting characteristics analysis, which show that the melting characteristic temperatures can be reduced by controlling the CaO-SiO2-Al2O3 ratio in the system. The co-vitrification experimental results confirmed that a vitreous content above 92%, a loss ratio on acid dissolution less than 1.74%, and leaching toxicity of heavy metals lower than 0.15 mg/L could be obtained by adjusting the CaO, SiO2, and Al2O3 contents in the FA and HWS system to 20 wt%-32.5 wt%, 35 wt%-61 wt% and 14 wt%-32.5 wt%, respectively, and under a melting temperature of 1350 °C.


Assuntos
Metais Pesados , Eliminação de Resíduos , Cinza de Carvão , Incineração , Dióxido de Silício , Esgotos , Vitrificação , Metais Pesados/análise , Resíduos Sólidos/análise , Eliminação de Resíduos/métodos , Carbono , Resíduos Perigosos , Material Particulado/análise
16.
Discov Oncol ; 14(1): 5, 2023 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-36639546

RESUMO

OBJECTIVES: To explore the correlation between tumor endothelial marker 1 (TEM1) and matrix metalloproteinase 2 (MMP-2) in uterine sarcoma and their roles in the progression of uterine sarcoma. METHODS: Uterine leiomyosarcoma (uLMS, n = 25) and uterine leiomyoma (n = 25) specimens were collected from a total of 50 patients. Immunohistochemistry assay was conducted to determine the expression of TEM1, MMP-2 and MMP-9. TEM1 over expression (hTEM1) and low expression (shRNA-TEM1) MES-SA cell lines were established as in vitro uterine sarcoma models. MMP-2 mRNA, protein expression and enzymatic activity were verified using qPCR, Western blot and gelatin zymography respectively. MMP-2 expression was downregulated using MMP-2 siRNA in hTEM1 MES-SA cells to better study the role of MMP-2. The invasive and migratory capacities of hTEM1, shRNA-TEM1, and hTEM1 treated with MMP-2 siRNA MES-SA cells were determined using transwell assays. Extracellular matrix (ECM) remodeling mediated by TEM1 was examined using cell-ECM adhesion and fluorescent gelatin-ECM degradation assays. The immunofluorescence of F-actin was examined to analyze the formation of invadopodia. Subcutaneous and intraperitoneal xenografts were established to validate the role of TEM1 in promoting uterine sarcoma metastasis. RESULTS: TEM1 and MMP-2 were expressed in 92% (n = 23) and 88% (n = 22) of uterine leiomyosarcoma specimens, respectively. Both TEM1 and MMP-2 were highly expressed in 100% (n = 17) of high stage (III-IV) uterine leiomyosarcoma specimens. In addition, TEM1 expression was positively correlated with MMP-2 expression in uterine leiomyosarcoma. The successful establishment of in vitro uterine sarcoma models was confirmed with qPCR and Western blotting tests. TEM1 promoted the invasion and metastasis of uterine sarcoma in vivo and in vitro. MMP-2 expression and activity were up-regulated in hTEM1 cells but down-regulated in shRNA-TEM1 cells. Importantly, MMP-2 knockdown impaired the invasive and migratory capacity of hTEM1 cells. TEM1 promoted ECM remodeling by increasing cell-ECM adhesion and ECM degradation. TEM1 overexpression also induced the formation of invadopodia. CONCLUSION: TEM1 was co-expressed and positively correlated with MMP-2 in uterine leiomyosarcoma specimens. In addition, both TEM1 and MMP-2 were associated with tumor development. TEM1 promoted uterine sarcoma progression by regulating MMP-2 activity and ECM remodeling.

17.
Environ Pollut ; 316(Pt 1): 120666, 2023 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-36403879

RESUMO

Although the environmental and health risks of chlorinated organophosphate esters (OPEs-Cl) have drawn much attention, its environmental behaviors have been insufficiently characterized. As a notable sink of this emerging contaminant, non-sanitary landfills, which may decompose/accumulate OPEs-Cl, is of particular concern. In the present study, the dynamic processes of the typical OPEs-Cl, tris(2-chloroethyl) phosphate (TCEP), in non-sanitary landfill soils were analyzed under anaerobic condition, and the microbial taxa involved in these processes were explored. Our results showed that TCEP could be simultaneously reduced by abiotic and biotic processes, as it was reduced by 73.9% and 65.5% over the 120-day experiment in landfill humus and subsoil, respectively. Notably, the degradation of TCEP was significantly (p < 0.05) enhanced under the stress of a high TCEP concentration (10 µg g-1), while its ecological consequences were found insignificant regarding the microbial diversity and community structure and the typical soil redox processes, including Fe(III)/SO42- reduction and methanogenesis, in both soils. The microbial diversity of subsoil was significantly lower, and acetate was an important factor in changing microbial communities in landfill soils. The microbes in the family Nocardioidaceae and genus Pseudomonas might contribute to in the degradation of TCEP in landfill humus and subsoil, respectively. The metabolism related to sulfur and sulfate respiration were significantly (p < 0.05) correlated with TCEP reduction, and Desulfosporosinus were found as a potentially functional microbial taxon in TCEP degradation in both soils. The results could advance our understanding of the environmental behavior of OPEs-Cl in landfill-like complex environments.


Assuntos
Retardadores de Chama , Solo , Solo/química , Retardadores de Chama/análise , Compostos Férricos , Organofosfatos/toxicidade , Instalações de Eliminação de Resíduos , Fosfatos , Ésteres , Monitoramento Ambiental/métodos , China
18.
J Environ Sci (China) ; 126: 545-555, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36503780

RESUMO

Attention should be paid to the sulfate reduction behavior in a pressure-bearing leachate saturated zone. In this study, within the relative pressure range of 0-0.6 MPa, the ambient temperature with the highest sulfate reduction rate of 50°C was selected to explore the difference in sulfate reduction behavior in a pressure-bearing leachate saturated zone. The results showed that the sulfate reduction rate might further increase with an increase in pressure; however, owing to the effect of pressure increase, the generated hydrogen sulfide (H2S) could not be released on time, thereby decreasing its highest concentration by approximately 85%, and the duration extended to about two times that of the atmospheric pressure. Microbial community structure and functional gene abundance analyses showed that the community distribution of sulfate-reducing bacteria was significantly affected by pressure conditions, and there was a negative correlation between disulfide reductase B (dsrB) gene abundance and H2S release rate. Other sulfate reduction processes that do not require disulfide reductase A (dsrA) and dsrB genes may be the key pathways affecting the sulfate reduction rate in the pressure-bearing leachate saturated zone. This study improves the understanding of sulfate reduction in landfills as well as provides a theoretical basis for the operation and management of landfills.


Assuntos
Pressão Atmosférica , Dissulfetos , Fenômenos Químicos , Fenômenos Físicos , Sulfatos
19.
Environ Sci Pollut Res Int ; 30(12): 33877-33885, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36502480

RESUMO

This study investigated the influence of the interaction between Fe-based substances and thermal treatment parameters on the leaching behavior of Cr in hazardous waste incineration fly ash (HWIFA) after thermal treatment. The results revealed that the interaction between the addition of Fe-based substance and the thermal treatment parameters and their effects on static and dynamic leaching behaviors of Cr had significant differences when Fe2O3, Fe3O4, and Fe were added, respectively. Specifically, when Fe2O3 or Fe was added, the thermal treatment temperature was the most significant factor affecting the static leaching of Cr in thermal treated HWIFA, and the interaction effect of other factors was not significant. The most important influence on the dynamic leaching behavior of Cr was the interaction between the thermal treatment temperature and the addition of Fe2O3. Different from the addition of Fe2O3, the effect of the addition of Fe3O4 on the static leaching of Cr in thermal treated HWIFA was more significant than that of thermal treatment temperature; meanwhile, the interaction between the thermal treatment temperature and the addition of Fe3O4 was also significant. However, when Fe3O4 was added, the effect of interaction between factors on the dynamic leaching of Cr in thermal treated HWIFA was consistent with that when Fe2O3 was added.


Assuntos
Metais Pesados , Eliminação de Resíduos , Incineração , Cinza de Carvão/análise , Metais Pesados/análise , Resíduos Perigosos , Temperatura , Resíduos Sólidos/análise , Carbono , Material Particulado
20.
Environ Technol ; : 1-10, 2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36369796

RESUMO

Typical value-added platform chemicals 5-hydroxymethylfurfural (HMF) and levulinic acid (LA) can be obtained from hexoses under microwave hydrothermal (MHT) conditions. This study explored the detailed transformation process regarding the MHT products in acidic seawater obtained using glucose and fructose as raw materials. The facile conversion of fructose compared with glucose was mainly ascribed to their different activation energies (56.721 and 88.594 kJ mol-1, respectively). The HMF and LA product yields were strongly affected by the MHT temperature and holding time in two types of hexose solution. Undesirable humins were found to inevitably form under each set of reaction conditions. The carbon balance results for reactants and products showed that up to 60% of fructose carbon was converted into value-added chemicals, while 47% of glucose carbon underwent the same conversion in acidic seawater under the optimal MHT conditions. This study provides further knowledge regarding the role of microwave heating combined with acidic seawater in green chemistry and is a useful reference for the biorefinery industry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...